строительные, ремонтные работы и услуги
Акция

Только в этом месяце, при монтаже щитка учета на опоре ЛЭП, вы получаете ящик из композитного материала, вместо металлического по той же стоимости.

Осторожно, Светодиоды! Или подводные камни при подключении LED-ламп

Осторожно, Светодиоды! Или подводные камни при подключении LED-ламп
Назад
Осторожно, Светодиоды! Или подводные камни при подключении LED-ламп

Светодиодное освещение входит в массы тотально как и китайскими лампочками с барахолок, так и злыми светодиодными прожекторами или спотами в потолок.

Светодиоды — это тренд, это круто, мощно и удобно. Они потребляют меньше мощности, более компактны. Но не всё так гладко, как кажется, и не все моменты учитывают. Лично мне не нравится, когда светодиодный фонарь на столбе лучит как точечный источник света и из-за этого прямо под столбом светло и хорошо, но зато слепит глаза, а в трёх метрах ни черта не видно.

Но дело не только в том, насколько удобно или не удобно это освещение! Есть ещё одно техническое западло, которое не все учитывают, но которое приводит к нехорошим последствиям. Для того, чтобы понять о том, какое же это такое западло, мы возвращаемся к самому началу и вспоминаем ранний пост про импульсные блоки питания, в котором коряво описано их устройство. Давайте его повторим?

Итак, блоки питания с трансформатором почти насовсем отошли нафиг. Почему? А потому что тяжело стабилизировать напряжение, потому что сам трансформатор тяжёлый и громоздкий и не везде его позапихаешь. Оказалось удобнее делать такие же блоки питания, но где трансформатор работает на более высокой частоте. Вот в нашей сети частота всего 50 Гц. А если её поднять до 25-30 кГц, то огромный трансформатор на 200 Ватт превратится в маленькую фиговинку.

А как поднять частоту сети? А сделать свой собственный генератор этой частоты на микросхеме или транзисторах! Пущай он наш маленький трансформатор и питает! А уже сам генератор мы будем питать обычным сетевым напряжением. Рассмотрим логику создателей ИБП дальше. Каким родом тока проще всего питать генератор? Постоянным, выпрямленным. А значит у нас появляется выпрямитель и фильтрующий конденсатор. И вот тут-то и начинается самое главное западло.

Повторим всё ещё раз. Обычное сетевое напряжение переменного тока выпрямляется при помощи диодного моста и попадает на фильтрующий конденсатор. После этого напряжение постоянного тока идёт на генератор высокой частоты. Напряжение высокой частоты проходит через трансформатор, понижается до нужного уровня, выпрямляется, стабилизируется и подаётся на выход блока питания.

И вот это вот конденсатор и создаёт нам самое главное западло. Когда мы подаём питание на любой импульсный блок питания (а это и компьютерный, и зарядка для сотового, и драйвер или блок питания для LED-светильника), то кратковременно на доли секунды потребляемый ток подскакивает до космических величин (раз в 10 больше обычного потребления).

ВНИМАНИЕ! Всё, описанное и подсчитанное ниже, подходит для тех случаев, когда вы ставите светодиодные светильники с отдельным внешним драйвером (в том числе и светодиодные прожекторы)! Если вы просто переходите на светодиодные лампы, которые питаются от 220 напрямую и в которых драйвер встроен внутрь, то обычно никаких проблем с освещением не возникает.

 

Давайте возьмём какой-нибудь драйвер от Mean Well и посмотрим на его спецификацию. Я наобум выбрал APC-16-350. Это хиленький такой драйвер на 16 Ватт со стабилизацией тока. Для какого-нибудь светодиода на 10 Ватт сгодится.

Спецификация LED-драйвера APC-16-350

 

Внимательно изучаем указанные там параметры и первым видим параметр «Потребляемый ток» («AC Current») — 0,3 ампера. И тут наши добрые люди (в том числе и те, кто заказывает мне щиты) как раз и пишут мне что-то типа «А, да у меня освещение светодиодное, всего десять драйверов по 0,3 ампера каждый, потребление фигня».

И когда-то я тоже думал, что потребление фигня. Ну смотрите сами: 0,3 х 10 = 3 ампера. Да это ж любая хилая релюшка справится, а защищать такие линии надо автоматом на 6А. Верно?

А вот НЕТ! Добрый производитель дал нам классный параметр «Стартовый ток» («Inrush Current»), который составляет.. 45 (сорок пять!) ампер за время 0,000 21 секунды! Представляете? Какие-то ничтожные 0,3 ампера при включении блока превращаются в 45! Это в 150 раз больше нормального потребления! И чтобы мы совсем уже расстроились, следующий параметр, который нам дают — это то, сколько таких драйверов можно навесить на автомат номиналом в 16А (а не 10А, которым мы обычно защищаем освещение): на B16 можно поставить 13 штук драйверов, а на С16 — 23 штуки.

Давайте ещё раз переосмыслим всё это. При старте хилый драйвер жрёт ток в 150 раз больше обычного (45 ампер)! А на автомат B16 их можно поставить всего 13 штук!

И вот из-за этого сейчас происходит всё больше и больше вот таких вот случаев (все они из первых рук, потому что это были мои заказчики):

  • В щите стоял автомат B6 для «хилых драйверов по 10 Вт». Драйверов было десять штук. При включении света обычным выключателем автомат наглухо вышибало. Заменили автомат на B10 — всё равно вышибало. Вышибать перестало на C10. Заменить автомат на C16 нельзя, потому что на освещение заложен стандартный кабель 3х1,5 кв.мм.
  • Регулярно (раз в месяц) сваривались контакты выключателя, который включал пяток светодиодов с их драйверами. Пришлось менять светильники на другие, в которых нет таких злобных драйверов (про это ниже).
  • Собрали щит с ПЛК и релюшками CR-P на 16А. Я как-то пропустил то, что светодиодные лампы там тоже с драйверами. После парочки включений этих ламп (тоже десяток светильников) релюшки спаялись и умерли. Хотя они, заметьте, расчитаны на 16А активной нагрузки.

И что делать? Как это исправлять? Положим, если бы горели какие-то там хилые релюшки! А горят даже выключатели! Обычные выключатели, рассчитанные на 10А. Давайте подумаем про возможные варианты:

  • Менять релюшки на контакторы серии ESB20 (на 20А с более прочными контактами). Но выдержат ли они? Стартовый ток десяти таких драйверов будет 45 х 10 = 450 ампер. При этом контакторы ESB20 не очень хорошие. Их магнитная система работает на переменном токе в отличие от всех других контакторов серии ESB и часто гудит или перегревается.
  • Ставить более злые контакторы. Ну это уже смешно. Прикиньте, сколько будет стоить щит на ESB24, если их понадобится поставить штук 25?
  • Использовать установочные реле E297 (аналог импульсных по размерам и типу, но без фиксации). Они заказные и рассчитаны на токи 16А. И мы ничего не выигрываем!
  • Использовать PTC-Термисторы, включенные последовательно с таким драйвером, чтобы облегчить его стартовый режим. Так делают в импульсных блоках питания на большие мощности. Я никогда не рассматривал этот вариант и буду благодарен, если мне кто-то подскажет в комментариях, что это такое и с чем их едят.

А как обойти фишку подгорания контактов у выключателя? Действительно, что ли, ставить контактор и закладывать магистраль 3х4 под автоматом C20 на такие светильники?..

Так что будьте ОЧЕНЬ внимательны со светодиодным освещением большой мощности! Не всё так легко и просто, и не всё так дешёво как может показаться: возможно, что вам придётся тратить денег на хитрую начинку щита для управления драйверами светодиодных ламп и только потом уже высчитывать общую экономию по потреблению электроэнергии!

 

Первоисточник

 

ПС: Данная статья отражает исключительное мнение её автора и не в коем случае не является обязательным руководством к деиствию. Не в коем случае не делайте какие-либо манипуляции с электропроводкой без базовых познаний в данной сфере. Это опасно для жизни. Любые работы довяряйте профессионалам.

Наши партнеры
Оставить заявку
Ваше имя:
Телефон или E-mail: *